Computer Science > Artificial Intelligence
[Submitted on 18 Jun 2024]
Title:A Novel Algorithm for Community Detection in Networks using Rough Sets and Consensus Clustering
View PDF HTML (experimental)Abstract:Complex networks, such as those in social, biological, and technological systems, often present challenges to the task of community detection. Our research introduces a novel rough clustering based consensus community framework (RC-CCD) for effective structure identification of network communities. The RC-CCD method employs rough set theory to handle uncertainties within data and utilizes a consensus clustering approach to aggregate multiple clustering results, enhancing the reliability and accuracy of community detection. This integration allows the RC-CCD to effectively manage overlapping communities, which are often present in complex networks.
This approach excels at detecting overlapping communities, offering a detailed and accurate representation of network structures. Comprehensive testing on benchmark networks generated by the Lancichinetti-Fortunato-Radicchi method showcased the strength and adaptability of the new proposal to varying node degrees and community sizes. Cross-comparisons of RC-CCD versus other well known detection algorithms outcomes highlighted its stability and adaptability.
Submission history
From: Darian Horacio Grass Boada [view email][v1] Tue, 18 Jun 2024 09:01:21 UTC (2,283 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.