Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jun 2024 (v1), last revised 5 Oct 2024 (this version, v3)]
Title:$α$-OCC: Uncertainty-Aware Camera-based 3D Semantic Occupancy Prediction
View PDF HTML (experimental)Abstract:In the realm of autonomous vehicle (AV) perception, comprehending 3D scenes is paramount for tasks such as planning and mapping. Camera-based 3D Semantic Occupancy Prediction (OCC) aims to infer scene geometry and semantics from limited observations. While it has gained popularity due to affordability and rich visual cues, existing methods often neglect the inherent uncertainty in models. To address this, we propose an uncertainty-aware camera-based 3D semantic occupancy prediction method ($\alpha$-OCC). Our approach includes an uncertainty propagation framework (Depth-UP) from depth models to enhance geometry completion (up to 11.58\% improvement) and semantic segmentation (up to 12.95\% improvement) for a variety of OCC models. Additionally, we propose a hierarchical conformal prediction (HCP) method to quantify OCC uncertainty, effectively addressing the high-level class imbalance in OCC datasets. On the geometry level, we present a novel KL-based score function that significantly improves the occupied recall of safety-critical classes (45\% improvement) with minimal performance overhead (3.4\% reduction). For uncertainty quantification, we demonstrate the ability to achieve smaller prediction set sizes while maintaining a defined coverage guarantee. Compared with baselines, it reduces up to 92\% set size. Our contributions represent significant advancements in OCC accuracy and robustness, marking a noteworthy step forward in autonomous perception systems.
Submission history
From: Sanbao Su [view email][v1] Sun, 16 Jun 2024 17:27:45 UTC (29,272 KB)
[v2] Fri, 21 Jun 2024 06:42:04 UTC (29,272 KB)
[v3] Sat, 5 Oct 2024 02:19:29 UTC (20,385 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.