Computer Science > Computation and Language
[Submitted on 12 Jun 2024 (v1), last revised 1 Jul 2024 (this version, v2)]
Title:Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models
View PDF HTML (experimental)Abstract:Fine-tuning large language models on small, high-quality datasets can enhance their performance on specific downstream tasks. Recent research shows that fine-tuning on benign, instruction-following data can inadvertently undo the safety alignment process and increase a model's propensity to comply with harmful queries. Although critical, understanding and mitigating safety risks in well-defined tasks remains distinct from the instruction-following context due to structural differences in the data. Our work addresses the gap in our understanding of these risks across diverse types of data in closed models - where providers control how user data is utilized in the fine-tuning process. We demonstrate how malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors, while maintaining an appearance of innocuity and reasonable downstream task performance. To address this issue, we propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data, showing this is more effective than existing baselines at re-establishing safety alignment while maintaining similar task performance.
Submission history
From: Francisco Eiras [view email][v1] Wed, 12 Jun 2024 18:33:11 UTC (679 KB)
[v2] Mon, 1 Jul 2024 10:17:58 UTC (618 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.