Computer Science > Machine Learning
[Submitted on 13 Jun 2024 (v1), last revised 28 Oct 2024 (this version, v2)]
Title:Is Value Learning Really the Main Bottleneck in Offline RL?
View PDF HTML (experimental)Abstract:While imitation learning requires access to high-quality data, offline reinforcement learning (RL) should, in principle, perform similarly or better with substantially lower data quality by using a value function. However, current results indicate that offline RL often performs worse than imitation learning, and it is often unclear what holds back the performance of offline RL. Motivated by this observation, we aim to understand the bottlenecks in current offline RL algorithms. While poor performance of offline RL is typically attributed to an imperfect value function, we ask: is the main bottleneck of offline RL indeed in learning the value function, or something else? To answer this question, we perform a systematic empirical study of (1) value learning, (2) policy extraction, and (3) policy generalization in offline RL problems, analyzing how these components affect performance. We make two surprising observations. First, we find that the choice of a policy extraction algorithm significantly affects the performance and scalability of offline RL, often more so than the value learning objective. For instance, we show that common value-weighted behavioral cloning objectives (e.g., AWR) do not fully leverage the learned value function, and switching to behavior-constrained policy gradient objectives (e.g., DDPG+BC) often leads to substantial improvements in performance and scalability. Second, we find that a big barrier to improving offline RL performance is often imperfect policy generalization on test-time states out of the support of the training data, rather than policy learning on in-distribution states. We then show that the use of suboptimal but high-coverage data or test-time policy training techniques can address this generalization issue in practice. Specifically, we propose two simple test-time policy improvement methods and show that these methods lead to better performance.
Submission history
From: Seohong Park [view email][v1] Thu, 13 Jun 2024 17:07:49 UTC (4,879 KB)
[v2] Mon, 28 Oct 2024 23:33:19 UTC (6,645 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.