Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Jun 2024]
Title:Computer Vision Approaches for Automated Bee Counting Application
View PDF HTML (experimental)Abstract:Many application from the bee colony health state monitoring could be efficiently solved using a computer vision techniques. One of such challenges is an efficient way for counting the number of incoming and outcoming bees, which could be used to further analyse many trends, such as the bee colony health state, blooming periods, or for investigating the effects of agricultural spraying. In this paper, we compare three methods for the automated bee counting over two own datasets. The best performing method is based on the ResNet-50 convolutional neural network classifier, which achieved accuracy of 87% over the BUT1 dataset and the accuracy of 93% over the BUT2 dataset.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.