Computer Science > Human-Computer Interaction
[Submitted on 11 Jun 2024]
Title:A qualitative field study on explainable AI for lay users subjected to AI cyberattacks
View PDF HTML (experimental)Abstract:In this paper we present results from a qualitative field study on explainable AI (XAI) for lay users (n = 18) who were subjected to AI cyberattacks. The study was based on a custom-built smart heating application called Squid and was conducted over seven weeks in early 2023. Squid combined a smart radiator valve installed in participant homes with a web application that implemented an AI feature known as setpoint learning, which is commonly available in consumer smart thermostats. Development of Squid followed the XAI principle of interpretability-by-design where the AI feature was implemented using a simple glass-box machine learning model with the model subsequently exposed to users via the web interface (e.g. as interactive visualisations). AI attacks on users were simulated by injecting malicious training data and by manipulating data used for model predictions. Research data consisted of semi-structured interviews, researcher field notes, participant diaries, and application logs. In our analysis we reflect on the impact of XAI on user satisfaction and user comprehension as well as its use as a tool for diagnosing AI attacks. Our results show only limited engagement with XAI features and suggest that, for Squid users, common assumptions found in the XAI literature were not aligned to reality. On the positive side, users appear to have developed better mental models of the AI feature compared to previous work, and there is evidence that users did make some use of XAI as a diagnostic tool.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.