Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 12 Jun 2024]
Title:FDLoRA: Personalized Federated Learning of Large Language Model via Dual LoRA Tuning
View PDF HTML (experimental)Abstract:Large language models (LLMs) have emerged as important components across various fields, yet their training requires substantial computation resources and abundant labeled data. It poses a challenge to robustly training LLMs for individual users (clients). To tackle this challenge, the intuitive idea is to introduce federated learning (FL), which can collaboratively train models on distributed private data. However, existing methods suffer from the challenges of data heterogeneity, system heterogeneity, and model size, resulting in suboptimal performance and high costs. In this work, we proposed a variant of personalized federated learning (PFL) framework, namely FDLoRA, which allows the client to be a single device or a cluster and adopts low-rank adaptation (LoRA) tuning. FDLoRA sets dual LoRA modules on each client to capture personalized and global knowledge, respectively, and only the global LoRA module uploads parameters to the central server to aggregate cross-client knowledge. Finally, an adaptive fusion approach is employed to combine the parameters of the dual LoRAs. This enables FDLoRA to make effective use of private data distributed across different clients, thereby improving performance on the client without incurring high communication and computing costs. We conducted extensive experiments in two practice scenarios. The results demonstrate that FDLoRA outperforms six baselines in terms of performance, stability, robustness, computation cost, and communication cost.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.