Computer Science > Artificial Intelligence
[Submitted on 10 Jun 2024 (v1), last revised 8 Nov 2024 (this version, v2)]
Title:On the Utility of Accounting for Human Beliefs about AI Intention in Human-AI Collaboration
View PDF HTML (experimental)Abstract:To enable effective human-AI collaboration, merely optimizing AI performance without considering human factors is insufficient. Recent research has shown that designing AI agents that take human behavior into account leads to improved performance in human-AI collaboration. However, a limitation of most existing approaches is their assumption that human behavior remains static, regardless of the AI agent's actions. In reality, humans may adjust their actions based on their beliefs about the AI's intentions, specifically, the subtasks they perceive the AI to be attempting to complete based on its behavior. In this paper, we address this limitation by enabling a collaborative AI agent to consider its human partner's beliefs about its intentions, i.e., what the human partner thinks the AI agent is trying to accomplish, and to design its action plan accordingly to facilitate more effective human-AI collaboration. Specifically, we developed a model of human beliefs that captures how humans interpret and reason about their AI partner's intentions. Using this belief model, we created an AI agent that incorporates both human behavior and human beliefs when devising its strategy for interacting with humans. Through extensive real-world human-subject experiments, we demonstrate that our belief model more accurately captures human perceptions of AI intentions. Furthermore, we show that our AI agent, designed to account for human beliefs over its intentions, significantly enhances performance in human-AI collaboration.
Submission history
From: Guanghui Yu [view email][v1] Mon, 10 Jun 2024 06:39:37 UTC (1,166 KB)
[v2] Fri, 8 Nov 2024 21:57:19 UTC (1,854 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.