Computer Science > Machine Learning
[Submitted on 6 Jun 2024]
Title:Beyond 5G Network Failure Classification for Network Digital Twin Using Graph Neural Network
View PDF HTML (experimental)Abstract:Fifth-generation (5G) core networks in network digital twins (NDTs) are complex systems with numerous components, generating considerable data. Analyzing these data can be challenging due to rare failure types, leading to imbalanced classes in multiclass classification. To address this problem, we propose a novel method of integrating a graph Fourier transform (GFT) into a message-passing neural network (MPNN) designed for NDTs. This approach transforms the data into a graph using the GFT to address class imbalance, whereas the MPNN extracts features and models dependencies between network components. This combined approach identifies failure types in real and simulated NDT environments, demonstrating its potential for accurate failure classification in 5G and beyond (B5G) networks. Moreover, the MPNN is adept at learning complex local structures among neighbors in an end-to-end setting. Extensive experiments have demonstrated that the proposed approach can identify failure types in three multiclass domain datasets at multiple failure points in real networks and NDT environments. The results demonstrate that the proposed GFT-MPNN can accurately classify network failures in B5G networks, especially when employed within NDTs to detect failure types.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.