Statistics > Methodology
[Submitted on 9 Jun 2024]
Title:Toward identifiability of total effects in summary causal graphs with latent confounders: an extension of the front-door criterion
View PDF HTML (experimental)Abstract:Conducting experiments to estimate total effects can be challenging due to cost, ethical concerns, or practical limitations. As an alternative, researchers often rely on causal graphs to determine if it is possible to identify these effects from observational data. Identifying total effects in fully specified non-temporal causal graphs has garnered considerable attention, with Pearl's front-door criterion enabling the identification of total effects in the presence of latent confounding even when no variable set is sufficient for adjustment. However, specifying a complete causal graph is challenging in many domains. Extending these identifiability results to partially specified graphs is crucial, particularly in dynamic systems where causal relationships evolve over time. This paper addresses the challenge of identifying total effects using a specific and well-known partially specified graph in dynamic systems called a summary causal graph, which does not specify the temporal lag between causal relations and can contain cycles. In particular, this paper presents sufficient graphical conditions for identifying total effects from observational data, even in the presence of hidden confounding and when no variable set is sufficient for adjustment, contributing to the ongoing effort to understand and estimate causal effects from observational data using summary causal graphs.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.