Computer Science > Machine Learning
[Submitted on 4 Jun 2024 (v1), last revised 14 Oct 2024 (this version, v5)]
Title:Fuzzy Convolution Neural Networks for Tabular Data Classification
View PDFAbstract:Recently, convolution neural networks (CNNs) have attracted a great deal of attention due to their remarkable performance in various domains, particularly in image and text classification tasks. However, their application to tabular data classification remains underexplored. There are many fields such as bioinformatics, finance, medicine where nonimage data are prevalent. Adaption of CNNs to classify nonimage data remains highly challenging. This paper investigates the efficacy of CNNs for tabular data classification, aiming to bridge the gap between traditional machine learning approaches and deep learning techniques. We propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically for tabular data to capture local patterns within feature vectors. In our approach, we map feature values to fuzzy memberships. The fuzzy membership vectors are converted into images that are used to train the CNN model. The trained CNN model is used to classify unknown feature vectors. To validate our approach, we generated six complex noisy data sets. We used randomly selected seventy percent samples from each data set for training and thirty percent for testing. The data sets were also classified using the state-of-the-art machine learning algorithms such as the decision tree (DT), support vector machine (SVM), fuzzy neural network (FNN), Bayes classifier, and Random Forest (RF). Experimental results demonstrate that our proposed model can effectively learn meaningful representations from tabular data, achieving competitive or superior performance compared to existing methods. Overall, our finding suggests that the proposed FCNN model holds promise as a viable alternative for tabular data classification tasks, offering a fresh prospective and potentially unlocking new opportunities for leveraging deep learning in structured data analysis.
Submission history
From: Arun Kulkarni [view email][v1] Tue, 4 Jun 2024 20:33:35 UTC (768 KB)
[v2] Sun, 16 Jun 2024 01:18:18 UTC (719 KB)
[v3] Tue, 18 Jun 2024 09:36:13 UTC (719 KB)
[v4] Sat, 24 Aug 2024 13:29:36 UTC (720 KB)
[v5] Mon, 14 Oct 2024 21:21:31 UTC (751 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.