Computer Science > Information Theory
[Submitted on 5 Jun 2024 (v1), last revised 14 Sep 2024 (this version, v2)]
Title:CSI-GPT: Integrating Generative Pre-Trained Transformer with Federated-Tuning to Acquire Downlink Massive MIMO Channels
View PDF HTML (experimental)Abstract:In massive multiple-input multiple-output (MIMO) systems, how to reliably acquire downlink channel state information (CSI) with low overhead is challenging. In this work, by integrating the generative pre-trained Transformer (GPT) with federated-tuning, we propose a CSI-GPT approach to realize efficient downlink CSI acquisition. Specifically, we first propose a Swin Transformer-based channel acquisition network (SWTCAN) to acquire downlink CSI, where pilot signals, downlink channel estimation, and uplink CSI feedback are jointly designed. Furthermore, to solve the problem of insufficient training data, we propose a variational auto-encoder-based channel sample generator (VAE-CSG), which can generate sufficient CSI samples based on a limited number of high-quality CSI data obtained from the current cell. The CSI dataset generated from VAE-CSG will be used for pre-training SWTCAN. To fine-tune the pre-trained SWTCAN for improved performance, we propose an online federated-tuning method, where only a small amount of SWTCAN parameters are unfrozen and updated using over-the-air computation, avoiding the high communication overhead caused by aggregating the complete CSI samples from user equipment (UEs) to the BS for centralized fine-tuning. Simulation results verify the advantages of the proposed SWTCAN and the communication efficiency of the proposed federated-tuning method. Our code is publicly available at this https URL
Submission history
From: Zhen Gao [view email][v1] Wed, 5 Jun 2024 16:33:35 UTC (72 KB)
[v2] Sat, 14 Sep 2024 14:26:12 UTC (208 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.