Computer Science > Artificial Intelligence
[Submitted on 4 Jun 2024]
Title:Speeding up Policy Simulation in Supply Chain RL
View PDF HTML (experimental)Abstract:Simulating a single trajectory of a dynamical system under some state-dependent policy is a core bottleneck in policy optimization algorithms. The many inherently serial policy evaluations that must be performed in a single simulation constitute the bulk of this bottleneck. To wit, in applying policy optimization to supply chain optimization (SCO) problems, simulating a single month of a supply chain can take several hours.
We present an iterative algorithm for policy simulation, which we dub Picard Iteration. This scheme carefully assigns policy evaluation tasks to independent processes. Within an iteration, a single process evaluates the policy only on its assigned tasks while assuming a certain 'cached' evaluation for other tasks; the cache is updated at the end of the iteration. Implemented on GPUs, this scheme admits batched evaluation of the policy on a single trajectory. We prove that the structure afforded by many SCO problems allows convergence in a small number of iterations, independent of the horizon. We demonstrate practical speedups of 400x on large-scale SCO problems even with a single GPU, and also demonstrate practical efficacy in other RL environments.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.