Computer Science > Computation and Language
[Submitted on 24 May 2024 (v1), last revised 30 Aug 2024 (this version, v2)]
Title:Expert-Token Resonance: Redefining MoE Routing through Affinity-Driven Active Selection
View PDF HTML (experimental)Abstract:Mixture-of-Experts (MoE) architectures have emerged as a paradigm-shifting approach for large language models (LLMs), offering unprecedented computational efficiency. However, these architectures grapple with challenges of token distribution imbalance and expert homogenization, impeding optimal semantic generalization. We introduce a novel framework that redefines MoE routing through affinity-driven active selection. The innovations for the framework encompass: (1) A rigorous formulation of expert-token affinity metrics. (2) An adaptive bidirectional selection mechanism leveraging resonance between experts and tokens. (3) Theoretical derivation and experimental evidence of reduced expert capacity bounds under dynamic token distribution evolution. It is also integrated with orthogonal feature extraction module and an optimized loss function for expert localization. Our theoretical analysis demonstrates that this approach mitigates expert homogenization while enabling substantial capacity boundary reduction. Experimental validation corroborates these findings: it achieves a 40% reduction in token processed by each expert without compromising model convergence or efficacy. When coupled with communication optimizations, the training efficiency improvements of 5.4% to 46.6% can be observed. After supervised fine-tuning, it exhibits performance gains of 9.7% to 14.1% across GDAD, C-Eval, and TeleQnA benchmarks.
Submission history
From: Jing Li [view email][v1] Fri, 24 May 2024 02:50:44 UTC (9,098 KB)
[v2] Fri, 30 Aug 2024 11:32:48 UTC (20,255 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.