Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 31 May 2024 (v1), last revised 27 Oct 2024 (this version, v2)]
Title:R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction
View PDF HTML (experimental)Abstract:3D Gaussian splatting (3DGS) has shown promising results in image rendering and surface reconstruction. However, its potential in volumetric reconstruction tasks, such as X-ray computed tomography, remains under-explored. This paper introduces R$^2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction. By carefully deriving X-ray rasterization functions, we discover a previously unknown integration bias in the standard 3DGS formulation, which hampers accurate volume retrieval. To address this issue, we propose a novel rectification technique via refactoring the projection from 3D to 2D Gaussians. Our new method presents three key innovations: (1) introducing tailored Gaussian kernels, (2) extending rasterization to X-ray imaging, and (3) developing a CUDA-based differentiable voxelizer. Experiments on synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art approaches in accuracy and efficiency. Crucially, it delivers high-quality results in 4 minutes, which is 12$\times$ faster than NeRF-based methods and on par with traditional algorithms. Code and models are available on the project page this https URL.
Submission history
From: Ruyi Zha [view email][v1] Fri, 31 May 2024 08:39:02 UTC (30,420 KB)
[v2] Sun, 27 Oct 2024 05:42:54 UTC (43,046 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.