Electrical Engineering and Systems Science > Systems and Control
[Submitted on 30 May 2024 (v1), last revised 11 Jun 2024 (this version, v2)]
Title:Stability-Constrained Learning for Frequency Regulation in Power Grids with Variable Inertia
View PDF HTML (experimental)Abstract:The increasing penetration of converter-based renewable generation has resulted in faster frequency dynamics, and low and variable inertia. As a result, there is a need for frequency control methods that are able to stabilize a disturbance in the power system at timescales comparable to the fast converter dynamics. This paper proposes a combined linear and neural network controller for inverter-based primary frequency control that is stable at time-varying levels of inertia. We model the time-variance in inertia via a switched affine hybrid system model. We derive stability certificates for the proposed controller via a quadratic candidate Lyapunov function. We test the proposed control on a 12-bus 3-area test network, and compare its performance with a base case linear controller, optimized linear controller, and finite-horizon Linear Quadratic Regulator (LQR). Our proposed controller achieves faster mean settling time and over 50% reduction in average control cost across $100$ inertia scenarios compared to the optimized linear controller. Unlike LQR which requires complete knowledge of the inertia trajectories and system dynamics over the entire control time horizon, our proposed controller is real-time tractable, and achieves comparable performance to LQR.
Submission history
From: Jie Feng [view email][v1] Thu, 30 May 2024 21:26:19 UTC (1,622 KB)
[v2] Tue, 11 Jun 2024 23:31:23 UTC (1,622 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.