Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 May 2024]
Title:Video Question Answering for People with Visual Impairments Using an Egocentric 360-Degree Camera
View PDF HTML (experimental)Abstract:This paper addresses the daily challenges encountered by visually impaired individuals, such as limited access to information, navigation difficulties, and barriers to social interaction. To alleviate these challenges, we introduce a novel visual question answering dataset. Our dataset offers two significant advancements over previous datasets: Firstly, it features videos captured using a 360-degree egocentric wearable camera, enabling observation of the entire surroundings, departing from the static image-centric nature of prior datasets. Secondly, unlike datasets centered on singular challenges, ours addresses multiple real-life obstacles simultaneously through an innovative visual-question answering framework. We validate our dataset using various state-of-the-art VideoQA methods and diverse metrics. Results indicate that while progress has been made, satisfactory performance levels for AI-powered assistive services remain elusive for visually impaired individuals. Additionally, our evaluation highlights the distinctive features of the proposed dataset, featuring ego-motion in videos captured via 360-degree cameras across varied scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.