Computer Science > Computational Complexity
[Submitted on 29 May 2024 (v1), last revised 24 Sep 2024 (this version, v2)]
Title:Derandomized Non-Abelian Homomorphism Testing in Low Soundness Regime
View PDF HTML (experimental)Abstract:We give a randomness-efficient homomorphism test in the low soundness regime for functions, $f: G\to \mathbb{U}_t$, from an arbitrary finite group $G$ to $t\times t$ unitary matrices. We show that if such a function passes a derandomized Blum--Luby--Rubinfeld (BLR) test (using small-bias sets), then (i) it correlates with a function arising from a genuine homomorphism, and (ii) it has a non-trivial Fourier mass on a low-dimensional irreducible representation.
In the full randomness regime, such a test for matrix-valued functions on finite groups implicitly appears in the works of Gowers and Hatami [Sbornik: Mathematics '17], and Moore and Russell [SIAM Journal on Discrete Mathematics '15]. Thus, our work can be seen as a near-optimal derandomization of their results. Our key technical contribution is a "degree-2 expander mixing lemma'' that shows that Gowers' $\mathrm{U}^2$ norm can be efficiently estimated by restricting it to a small-bias subset. Another corollary is a "derandomized'' version of a useful lemma due to Babai, Nikolov, and Pyber [SODA'08] and Gowers [Comb. Probab. Comput.'08].
Submission history
From: Tushant Mittal [view email][v1] Wed, 29 May 2024 11:25:31 UTC (35 KB)
[v2] Tue, 24 Sep 2024 01:12:18 UTC (43 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.