Computer Science > Computational Complexity
[Submitted on 28 May 2024]
Title:A linear bound for the size of the finite terminal assembly of a directed non-cooperative tile assembly system
View PDF HTML (experimental)Abstract:The abstract tile assembly model (aTam) is a model of DNA self-assembly. Most of the studies focus on cooperative aTam where a form of synchronization between the tiles is possible. Simulating Turing machines is achievable in this context. Few results and constructions are known for the non-cooperative case (a variant of Wang tilings where assemblies do not need to cover the whole plane and some mismatches may occur).
Introduced by P.E. Meunier and D. Regnault, efficient paths are a non-trivial construction for non-cooperative aTam. These paths of width nlog(n) are designed with n different tile types. Assembling them relies heavily on a form of ``non-determinism''. Indeed, the set of tiles may produced different finite terminal assemblies but they all contain the same efficient path. Directed non-cooperative aTam does not allow this non-determinism as only one assembly may be produced by a tile assembly system. This variant of aTam is the only one who was shown to be decidable.
In this paper, we show that if the terminal assembly of a directed non-cooperative tile assembly system is finite then its width and length are of linear size according to the size of the tile assembly system. This result implies that the construction of efficient paths cannot be generalized to the directed case and that some computation must rely on a competition between different paths. It also implies that the construction of a square of width n using 2n-1 tiles types is asymptotically optimal. Moreover, we hope that the techniques introduced here will lead to a better comprehension of the non-directed case.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.