Electrical Engineering and Systems Science > Systems and Control
[Submitted on 28 May 2024]
Title:A Verifiable Computing Scheme for Encrypted Control Systems
View PDF HTML (experimental)Abstract:The proliferation of cloud computing technologies has paved the way for deploying networked encrypted control systems, offering high performance, remote accessibility and privacy. However, in scenarios where the control algorithms run on third-party cloud service providers, the control logic might be changed by a malicious agent on the cloud. Consequently, it is imperative to verify the correctness of the control signals received from the cloud. Traditional verification methods, like zero-knowledge proof techniques, are computationally demanding in both proof generation and verification, may require several rounds of interactions between the prover and verifier and, consequently, are inapplicable in realtime control system applications. In this paper, we present a novel computationally inexpensive verifiable computing solution inspired by the probabilistic cut-and-choose approach. The proposed scheme allows the plant's actuator to validate the computations accomplished by the encrypted cloud-based networked controller without compromising the control scheme's performance. We showcase the effectiveness and real-time applicability of the proposed verifiable computation scheme using a remotely controlled Khepera IV differential-drive robot.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.