Computer Science > Machine Learning
[Submitted on 27 May 2024]
Title:Efficient Ensembles Improve Training Data Attribution
View PDF HTML (experimental)Abstract:Training data attribution (TDA) methods aim to quantify the influence of individual training data points on the model predictions, with broad applications in data-centric AI, such as mislabel detection, data selection, and copyright compensation. However, existing methods in this field, which can be categorized as retraining-based and gradient-based, have struggled with the trade-off between computational efficiency and attribution efficacy. Retraining-based methods can accurately attribute complex non-convex models but are computationally prohibitive, while gradient-based methods are efficient but often fail for non-convex models. Recent research has shown that augmenting gradient-based methods with ensembles of multiple independently trained models can achieve significantly better attribution efficacy. However, this approach remains impractical for very large-scale applications.
In this work, we discover that expensive, fully independent training is unnecessary for ensembling the gradient-based methods, and we propose two efficient ensemble strategies, DROPOUT ENSEMBLE and LORA ENSEMBLE, alternative to naive independent ensemble. These strategies significantly reduce training time (up to 80%), serving time (up to 60%), and space cost (up to 80%) while maintaining similar attribution efficacy to the naive independent ensemble. Our extensive experimental results demonstrate that the proposed strategies are effective across multiple TDA methods on diverse datasets and models, including generative settings, significantly advancing the Pareto frontier of TDA methods with better computational efficiency and attribution efficacy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.