Computer Science > Social and Information Networks
[Submitted on 26 May 2024 (v1), last revised 17 Nov 2024 (this version, v2)]
Title:Link Prediction on Textual Edge Graphs
View PDF HTML (experimental)Abstract:Textual-edge Graphs (TEGs), characterized by rich text annotations on edges, are increasingly significant in network science due to their ability to capture rich contextual information among entities. Existing works have proposed various edge-aware graph neural networks (GNNs) or let language models directly make predictions. However, they often fall short of fully capturing the contextualized semantics on edges and graph topology, respectively. This inadequacy is particularly evident in link prediction tasks that require a comprehensive understanding of graph topology and semantics between nodes. In this paper, we present a novel framework - Link2Doc, designed especially for link prediction on textual-edge graphs. Specifically, we propose to summarize neighborhood information between node pairs as a human-written document to preserve both semantic and topology information. A self-supervised learning model is then utilized to enhance GNN's text-understanding ability from language models. Empirical evaluations, including link prediction, edge classification, parameter analysis, runtime comparison, and ablation studies, on four real-world datasets demonstrate that Link2Doc achieves generally better performance against existing edge-aware GNNs and pre-trained language models in predicting links on TEGs.
Submission history
From: Chen Ling [view email][v1] Sun, 26 May 2024 15:31:28 UTC (685 KB)
[v2] Sun, 17 Nov 2024 14:36:40 UTC (728 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.