Physics > Atmospheric and Oceanic Physics
[Submitted on 24 May 2024 (v1), last revised 29 Oct 2024 (this version, v2)]
Title:Data-driven Global Ocean Modeling for Seasonal to Decadal Prediction
View PDF HTML (experimental)Abstract:Accurate ocean dynamics modeling is crucial for enhancing understanding of ocean circulation, predicting climate variability, and tackling challenges posed by climate change. Despite improvements in traditional numerical models, predicting global ocean variability over multi-year scales remains challenging. Here, we propose ORCA-DL (Oceanic Reliable foreCAst via Deep Learning), the first data-driven 3D ocean model for seasonal to decadal prediction of global ocean circulation. ORCA-DL accurately simulates three-dimensional ocean dynamics and outperforms state-of-the-art dynamical models in capturing extreme events, including El Niño-Southern Oscillation and upper ocean heatwaves. This demonstrates the high potential of data-driven models for efficient and accurate global ocean forecasting. Moreover, ORCA-DL stably emulates ocean dynamics at decadal timescales, demonstrating its potential even for skillful decadal predictions and climate projections.
Submission history
From: Zijie Guo [view email][v1] Fri, 24 May 2024 10:23:17 UTC (2,232 KB)
[v2] Tue, 29 Oct 2024 06:06:10 UTC (42,068 KB)
Current browse context:
physics.ao-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.