Computer Science > Machine Learning
[Submitted on 22 May 2024 (v1), last revised 17 Aug 2024 (this version, v3)]
Title:Design Editing for Offline Model-based Optimization
View PDF HTML (experimental)Abstract:Offline model-based optimization (MBO) aims to maximize a black-box objective function using only an offline dataset of designs and scores. These tasks span various domains, such as robotics, material design, and protein and molecular engineering. A common approach involves training a surrogate model using existing designs and their corresponding scores, and then generating new designs through gradient-based updates with respect to the surrogate model. This method suffers from the out-of-distribution issue, where the surrogate model may erroneously predict high scores for unseen designs. To address this challenge, we introduce a novel method, Design Editing for Offline Model-based Optimization} (DEMO), which leverages a diffusion prior to calibrate overly optimized designs. DEMO first generates pseudo design candidates by performing gradient ascent with respect to a surrogate model. Then, an editing process refines these pseudo design candidates by introducing noise and subsequently denoising them with a diffusion prior trained on the offline dataset, ensuring they align with the distribution of valid designs. We provide a theoretical proof that the difference between the final optimized designs generated by DEMO and the prior distribution of the offline dataset is controlled by the noise injected during the editing process. Empirical evaluations on seven offline MBO tasks show that DEMO outperforms various baseline methods, achieving the highest mean rank of 2.1 and a median rank of 1.
Submission history
From: Ye Yuan [view email][v1] Wed, 22 May 2024 20:00:19 UTC (661 KB)
[v2] Sun, 26 May 2024 15:32:47 UTC (661 KB)
[v3] Sat, 17 Aug 2024 19:51:14 UTC (469 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.