Computer Science > Information Theory
[Submitted on 20 May 2024 (v1), last revised 18 Jun 2024 (this version, v2)]
Title:Embracing Radiance Field Rendering in 6G: Over-the-Air Training and Inference with 3D Contents
View PDF HTML (experimental)Abstract:The efficient representation, transmission, and reconstruction of three-dimensional (3D) contents are becoming increasingly important for sixth-generation (6G) networks that aim to merge virtual and physical worlds for offering immersive communication experiences. Neural radiance field (NeRF) and 3D Gaussian splatting (3D-GS) have recently emerged as two promising 3D representation techniques based on radiance field rendering, which are able to provide photorealistic rendering results for complex scenes. Therefore, embracing NeRF and 3D-GS in 6G networks is envisioned to be a prominent solution to support emerging 3D applications with enhanced quality of experience. This paper provides a comprehensive overview on the integration of NeRF and 3D-GS in 6G. First, we review the basics of the radiance field rendering techniques, and highlight their applications and implementation challenges over wireless networks. Next, we consider the over-the-air training of NeRF and 3D-GS models over wireless networks by presenting various learning techniques. We particularly focus on the federated learning design over a hierarchical device-edge-cloud architecture, which is suitable for exploiting distributed data and computing resources over 6G networks to train large models representing large-scale scenes. Then, we consider the over-the-air rendering of NeRF and 3D-GS models at wireless network edge. We present three practical rendering architectures, namely local, remote, and co-rendering, respectively, and provide model compression approaches to facilitate the transmission of radiance field models for rendering. We also present rendering acceleration approaches and joint computation and communication designs to enhance the rendering efficiency. In a case study, we propose a new semantic communication enabled 3D content transmission design.
Submission history
From: Guanlin Wu [view email][v1] Mon, 20 May 2024 16:32:37 UTC (1,036 KB)
[v2] Tue, 18 Jun 2024 06:04:33 UTC (1,042 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.