Computer Science > Information Retrieval
[Submitted on 16 May 2024]
Title:Pointwise Metrics for Clustering Evaluation
View PDF HTML (experimental)Abstract:This paper defines pointwise clustering metrics, a collection of metrics for characterizing the similarity of two clusterings. These metrics have several interesting properties which make them attractive for practical applications. They can take into account the relative importance of the various items that are clustered. The metric definitions are based on standard set-theoretic notions and are simple to understand. They characterize aspects that are important for typical applications, such as cluster homogeneity and completeness. It is possible to assign metrics to individual items, clusters, arbitrary slices of items, and the overall clustering. The metrics can provide deep insights, for example they can facilitate drilling deeper into clustering mistakes to understand where they happened, or help to explore slices of items to understand how they were affected. Since the pointwise metrics are mathematically well-behaved, they can provide a strong foundation for a variety of clustering evaluation techniques. In this paper we discuss in depth how the pointwise metrics can be used to evaluate an actual clustering with respect to a ground truth clustering.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.