Computer Science > Human-Computer Interaction
[Submitted on 15 May 2024]
Title:Investigating the Effect of Operation Mode and Manifestation on Physicalizations of Dynamic Processes
View PDF HTML (experimental)Abstract:We conducted a study to systematically investigate the communication of complex dynamic processes along a two-dimensional design space, where the axes represent a representation's manifestation (physical or virtual) and operation (manual or automatic). We exemplify the design space on a model embodying cardiovascular pathologies, represented by a mechanism where a liquid is pumped into a draining vessel, with complications illustrated through modifications to the model. The results of a mixed-methods lab study with 28 participants show that both physical manifestation and manual operation have a strong positive impact on the audience's engagement. The study does not show a measurable knowledge increase with respect to cardiovascular pathologies using manually operated physical representations. However, subjectively, participants report a better understanding of the process-mainly through non-visual cues like haptics, but also auditory cues. The study also indicates an increased task load when interacting with the process, which, however, seems to play a minor role for the participants. Overall, the study shows a clear potential of physicalization for the communication of complex dynamic processes, which only fully unfold if observers have to chance to interact with the process.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.