Computer Science > Computational Engineering, Finance, and Science
[Submitted on 9 May 2024]
Title:A Robust eLORETA Technique for Localization of Brain Sources in the Presence of Forward Model Uncertainties
View PDFAbstract:In this paper, we present a robust version of the well-known exact low-resolution electromagnetic tomography (eLORETA) technique, named ReLORETA, to localize brain sources in the presence of different forward model uncertainties. Methods: We first assume that the true lead field matrix is a transformation of the existing lead field matrix distorted by uncertainties and propose an iterative approach to estimate this transformation accurately. Major sources of the forward model uncertainties, including differences in geometry, conductivity, and source space resolution between the real and simulated head models, and misaligned electrode positions, are then simulated to test the proposed method. Results: ReLORETA and eLORETA are applied to simulated focal sources in different regions of the brain and the presence of various noise levels as well as real data from a patient with focal epilepsy. The results show that ReLORETA is considerably more robust and accurate than eLORETA in all cases. Conclusion: Having successfully dealt with the forward model uncertainties, ReLORETA proved to be a promising method for real-world clinical applications. Significance: eLORETA is one of the localization techniques that could be used to study brain activity for medical applications such as determining the epileptogenic zone in patients with medically refractory epilepsy. However, the major limitation of eLORETA is sensitivity to the uncertainties in the forward model. Since this problem can substantially undermine its performance in real-world applications where the exact lead field matrix is unknown, developing a more robust method capable of dealing with these uncertainties is of significant interest.
Current browse context:
cs.CE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.