Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 9 May 2024]
Title:VM-DDPM: Vision Mamba Diffusion for Medical Image Synthesis
View PDF HTML (experimental)Abstract:In the realm of smart healthcare, researchers enhance the scale and diversity of medical datasets through medical image synthesis. However, existing methods are limited by CNN local perception and Transformer quadratic complexity, making it difficult to balance structural texture consistency. To this end, we propose the Vision Mamba DDPM (VM-DDPM) based on State Space Model (SSM), fully combining CNN local perception and SSM global modeling capabilities, while maintaining linear computational complexity. Specifically, we designed a multi-level feature extraction module called Multi-level State Space Block (MSSBlock), and a basic unit of encoder-decoder structure called State Space Layer (SSLayer) for medical pathological images. Besides, we designed a simple, Plug-and-Play, zero-parameter Sequence Regeneration strategy for the Cross-Scan Module (CSM), which enabled the S6 module to fully perceive the spatial features of the 2D image and stimulate the generalization potential of the model. To our best knowledge, this is the first medical image synthesis model based on the SSM-CNN hybrid architecture. Our experimental evaluation on three datasets of different scales, i.e., ACDC, BraTS2018, and ChestXRay, as well as qualitative evaluation by radiologists, demonstrate that VM-DDPM achieves state-of-the-art performance.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.