Computer Science > Machine Learning
[Submitted on 7 May 2024 (v1), last revised 9 May 2024 (this version, v2)]
Title:Explainable machine learning for predicting shellfish toxicity in the Adriatic Sea using long-term monitoring data of HABs
View PDFAbstract:In this study, explainable machine learning techniques are applied to predict the toxicity of mussels in the Gulf of Trieste (Adriatic Sea) caused by harmful algal blooms. By analysing a newly created 28-year dataset containing records of toxic phytoplankton in mussel farming areas and toxin concentrations in mussels (Mytilus galloprovincialis), we train and evaluate the performance of ML models to accurately predict diarrhetic shellfish poisoning (DSP) events. The random forest model provided the best prediction of positive toxicity results based on the F1 score. Explainability methods such as permutation importance and SHAP identified key species (Dinophysis fortii and D. caudata) and environmental factors (salinity, river discharge and precipitation) as the best predictors of DSP outbreaks. These findings are important for improving early warning systems and supporting sustainable aquaculture practices.
Submission history
From: Martin Marzidovsek [view email][v1] Tue, 7 May 2024 14:55:42 UTC (2,494 KB)
[v2] Thu, 9 May 2024 09:46:35 UTC (2,495 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.