Computer Science > Information Retrieval
[Submitted on 3 May 2024]
Title:A Model-based Multi-Agent Personalized Short-Video Recommender System
View PDF HTML (experimental)Abstract:Recommender selects and presents top-K items to the user at each online request, and a recommendation session consists of several sequential requests. Formulating a recommendation session as a Markov decision process and solving it by reinforcement learning (RL) framework has attracted increasing attention from both academic and industry communities. In this paper, we propose a RL-based industrial short-video recommender ranking framework, which models and maximizes user watch-time in an environment of user multi-aspect preferences by a collaborative multi-agent formulization. Moreover, our proposed framework adopts a model-based learning approach to alleviate the sample selection bias which is a crucial but intractable problem in industrial recommender system. Extensive offline evaluations and live experiments confirm the effectiveness of our proposed method over alternatives. Our proposed approach has been deployed in our real large-scale short-video sharing platform, successfully serving over hundreds of millions users.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.