Computer Science > Human-Computer Interaction
[Submitted on 22 Apr 2024 (v1), last revised 29 Apr 2024 (this version, v2)]
Title:Exploring Algorithmic Explainability: Generating Explainable AI Insights for Personalized Clinical Decision Support Focused on Cannabis Intoxication in Young Adults
View PDF HTML (experimental)Abstract:This study explores the possibility of facilitating algorithmic decision-making by combining interpretable artificial intelligence (XAI) techniques with sensor data, with the aim of providing researchers and clinicians with personalized analyses of cannabis intoxication behavior. SHAP analyzes the importance and quantifies the impact of specific factors such as environmental noise or heart rate, enabling clinicians to pinpoint influential behaviors and environmental conditions. SkopeRules simplify the understanding of cannabis use for a specific activity or environmental use. Decision trees provide a clear visualization of how factors interact to influence cannabis consumption. Counterfactual models help identify key changes in behaviors or conditions that may alter cannabis use outcomes, to guide effective individualized intervention strategies. This multidimensional analytical approach not only unveils changes in behavioral and physiological states after cannabis use, such as frequent fluctuations in activity states, nontraditional sleep patterns, and specific use habits at different times and places, but also highlights the significance of individual differences in responses to cannabis use. These insights carry profound implications for clinicians seeking to gain a deeper understanding of the diverse needs of their patients and for tailoring precisely targeted intervention strategies. Furthermore, our findings highlight the pivotal role that XAI technologies could play in enhancing the transparency and interpretability of Clinical Decision Support Systems (CDSS), with a particular focus on substance misuse treatment. This research significantly contributes to ongoing initiatives aimed at advancing clinical practices that aim to prevent and reduce cannabis-related harms to health, positioning XAI as a supportive tool for clinicians and researchers alike.
Submission history
From: Tongze Zhang [view email][v1] Mon, 22 Apr 2024 20:18:12 UTC (2,146 KB)
[v2] Mon, 29 Apr 2024 15:34:32 UTC (2,146 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.