Computer Science > Computation and Language
[Submitted on 16 Apr 2024]
Title:Relational Graph Convolutional Networks for Sentiment Analysis
View PDF HTML (experimental)Abstract:With the growth of textual data across online platforms, sentiment analysis has become crucial for extracting insights from user-generated content. While traditional approaches and deep learning models have shown promise, they cannot often capture complex relationships between entities. In this paper, we propose leveraging Relational Graph Convolutional Networks (RGCNs) for sentiment analysis, which offer interpretability and flexibility by capturing dependencies between data points represented as nodes in a graph. We demonstrate the effectiveness of our approach by using pre-trained language models such as BERT and RoBERTa with RGCN architecture on product reviews from Amazon and Digikala datasets and evaluating the results. Our experiments highlight the effectiveness of RGCNs in capturing relational information for sentiment analysis tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.