Mathematics > Numerical Analysis
[Submitted on 17 Apr 2024]
Title:Lyapunov exponents of renewal equations: numerical approximation and convergence analysis
View PDF HTML (experimental)Abstract:We propose a numerical method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type), consisting first in applying a discrete QR technique to the associated evolution family suitably posed on a Hilbert state space and second in reducing to finite dimension each evolution operator in the obtained time sequence. The reduction to finite dimension relies on Fourier projection in the state space and on pseudospectral collocation in the forward time step. A rigorous proof of convergence of both the discretized operators and the approximated exponents is provided. A MATLAB implementation is also included for completeness.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.