Computer Science > Logic in Computer Science
[Submitted on 12 Apr 2024 (v1), last revised 22 May 2024 (this version, v2)]
Title:Composing Codensity Bisimulations
View PDF HTML (experimental)Abstract:Proving compositionality of behavioral equivalence on state-based systems with respect to algebraic operations is a classical and widely studied problem. We study a categorical formulation of this problem, where operations on state-based systems modeled as coalgebras can be elegantly captured through distributive laws between functors. To prove compositionality, it then suffices to show that this distributive law lifts from sets to relations, giving an explanation of how behavioral equivalence on smaller systems can be combined to obtain behavioral equivalence on the composed system.
In this paper, we refine this approach by focusing on so-called codensity lifting of functors, which gives a very generic presentation of various notions of (bi)similarity as well as quantitative notions such as behavioral metrics on probabilistic systems. The key idea is to use codensity liftings both at the level of algebras and coalgebras, using a new generalization of the codensity lifting. The problem of lifting distributive laws then reduces to the abstract problem of constructing distributive laws between codensity liftings, for which we propose a simplified sufficient condition. Our sufficient condition instantiates to concrete proof methods for compositionality of algebraic operations on various types of state-based systems. We instantiate our results to prove compositionality of qualitative and quantitative properties of deterministic automata. We also explore the limits of our approach by including an example of probabilistic systems, where it is unclear whether the sufficient condition holds, and instead we use our setting to give a direct proof of compositionality. ...
Submission history
From: Kazuki Watanabe [view email][v1] Fri, 12 Apr 2024 08:06:32 UTC (39 KB)
[v2] Wed, 22 May 2024 02:57:19 UTC (39 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.