Computer Science > Computation and Language
[Submitted on 11 Apr 2024]
Title:Data-Augmentation-Based Dialectal Adaptation for LLMs
View PDF HTML (experimental)Abstract:This report presents GMUNLP's participation to the Dialect-Copa shared task at VarDial 2024, which focuses on evaluating the commonsense reasoning capabilities of large language models (LLMs) on South Slavic micro-dialects. The task aims to assess how well LLMs can handle non-standard dialectal varieties, as their performance on standard languages is already well-established. We propose an approach that combines the strengths of different types of language models and leverages data augmentation techniques to improve task performance on three South Slavic dialects: Chakavian, Cherkano, and Torlak. We conduct experiments using a language-family-focused encoder-based model (BERTić) and a domain-agnostic multilingual model (AYA-101). Our results demonstrate that the proposed data augmentation techniques lead to substantial performance gains across all three test datasets in the open-source model category. This work highlights the practical utility of data augmentation and the potential of LLMs in handling non-standard dialectal varieties, contributing to the broader goal of advancing natural language understanding in low-resource and dialectal settings. Code:this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.