Computer Science > Logic in Computer Science
[Submitted on 9 Apr 2024 (v1), last revised 7 Dec 2024 (this version, v3)]
Title:A Semantic Proof of Generalised Cut Elimination for Deep Inference
View PDF HTML (experimental)Abstract:Multiplicative-Additive System Virtual (MAV) is a logic that extends Multiplicative-Additive Linear Logic with a self-dual non-commutative operator expressing the concept of "before" or "sequencing". MAV is also an extenson of the the logic Basic System Virtual (BV) with additives. Formulas in BV have an appealing reading as processes with parallel and sequential composition. MAV adds internal and external choice operators. BV and MAV are also closely related to Concurrent Kleene Algebras.
Proof systems for MAV and BV are Deep Inference systems, which allow inference rules to be applied anywhere inside a structure. As with any proof system, a key question is whether proofs in MAV can be reduced to a normal form, removing detours and the introduction of structures not present in the original goal. In Sequent Calcluli systems, this property is referred to as Cut Elimination. Deep Inference systems have an analogous Cut rule and other rules that are not present in normalised proofs. Cut Elimination for Deep Inference systems has the same metatheoretic benefits as for Sequent Calculi systems, including consistency and decidability.
Proofs of Cut Elimination for BV, MAV, and other Deep Inference systems present in the literature have relied on intrincate syntactic reasoning and complex termination measures.
We present a concise semantic proof that all MAV proofs can be reduced to a normal form avoiding the Cut rule and other "non analytic" rules. We also develop soundness and completeness proofs of MAV (and BV) with respect to a class of models. We have mechanised all our proofs in the Agda proof assistant, which provides both assurance of their correctness as well as yielding an executable normalisation procedure.- Our technique extends to include exponentials and the additive units.
Submission history
From: Michael Mislove [view email][v1] Tue, 9 Apr 2024 11:53:27 UTC (72 KB)
[v2] Thu, 28 Nov 2024 10:43:21 UTC (73 KB)
[v3] Sat, 7 Dec 2024 20:24:29 UTC (74 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.