Computer Science > Information Retrieval
[Submitted on 4 Apr 2024]
Title:A Directional Diffusion Graph Transformer for Recommendation
View PDF HTML (experimental)Abstract:In real-world recommender systems, implicitly collected user feedback, while abundant, often includes noisy false-positive and false-negative interactions. The possible misinterpretations of the user-item interactions pose a significant challenge for traditional graph neural recommenders. These approaches aggregate the users' or items' neighbours based on implicit user-item interactions in order to accurately capture the users' profiles. To account for and model possible noise in the users' interactions in graph neural recommenders, we propose a novel Diffusion Graph Transformer (DiffGT) model for top-k recommendation. Our DiffGT model employs a diffusion process, which includes a forward phase for gradually introducing noise to implicit interactions, followed by a reverse process to iteratively refine the representations of the users' hidden preferences (i.e., a denoising process). In our proposed approach, given the inherent anisotropic structure observed in the user-item interaction graph, we specifically use anisotropic and directional Gaussian noises in the forward diffusion process. Our approach differs from the sole use of isotropic Gaussian noises in existing diffusion models. In the reverse diffusion process, to reverse the effect of noise added earlier and recover the true users' preferences, we integrate a graph transformer architecture with a linear attention module to denoise the noisy user/item embeddings in an effective and efficient manner. In addition, such a reverse diffusion process is further guided by personalised information (e.g., interacted items) to enable the accurate estimation of the users' preferences on items. Our extensive experiments conclusively demonstrate the superiority of our proposed graph diffusion model over ten existing state-of-the-art approaches across three benchmark datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.