Computer Science > Information Theory
[Submitted on 22 Feb 2024]
Title:FastqZip: An Improved Reference-Based Genome Sequence Lossy Compression Framework
View PDF HTML (experimental)Abstract:Storing and archiving data produced by next-generation sequencing (NGS) is a huge burden for research institutions. Reference-based compression algorithms are effective in dealing with these data. Our work focuses on compressing FASTQ format files with an improved reference-based compression algorithm to achieve a higher compression ratio than other state-of-the-art algorithms. We propose FastqZip, which uses a new method mapping the sequence to reference for compression, allows reads-reordering and lossy quality scores, and the BSC or ZPAQ algorithm to perform final lossless compression for a higher compression ratio and relatively fast speed. Our method ensures the sequence can be losslessly reconstructed while allowing lossless or lossy compression for the quality scores. We reordered the reads to get a higher compression ratio. We evaluate our algorithms on five datasets and show that FastqZip can outperform the SOTA algorithm Genozip by around 10% in terms of compression ratio while having an acceptable slowdown.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.