Mathematics > Numerical Analysis
[Submitted on 3 Apr 2024]
Title:Adaptive hp-Polynomial Based Sparse Grid Collocation Algorithms for Piecewise Smooth Functions with Kinks
View PDF HTML (experimental)Abstract:High-dimensional interpolation problems appear in various applications of uncertainty quantification, stochastic optimization and machine learning. Such problems are computationally expensive and request the use of adaptive grid generation strategies like anisotropic sparse grids to mitigate the curse of dimensionality. However, it is well known that the standard dimension-adaptive sparse grid method converges very slowly or even fails in the case of non-smooth functions. For piecewise smooth functions with kinks, we construct two novel hp-adaptive sparse grid collocation algorithms that combine low-order basis functions with local support in parts of the domain with less regularity and variable-order basis functions elsewhere. Spatial refinement is realized by means of a hierarchical multivariate knot tree which allows the construction of localised hierarchical basis functions with varying order. Hierarchical surplus is used as an error indicator to automatically detect the non-smooth region and adaptively refine the collocation points there. The local polynomial degrees are optionally selected by a greedy approach or a kink detection procedure. Three numerical benchmark examples with different dimensions are discussed and comparison with locally linear and highest degree basis functions are given to show the efficiency and accuracy of the proposed methods.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.