Computer Science > Computation and Language
[Submitted on 1 Apr 2024 (v1), last revised 7 Sep 2024 (this version, v2)]
Title:Exploring the Mystery of Influential Data for Mathematical Reasoning
View PDF HTML (experimental)Abstract:Selecting influential data for fine-tuning on downstream tasks is a key factor for both performance and computation efficiency. Recent works have shown that training with only limited data can show a superior performance on general tasks. However, the feasibility on mathematical reasoning tasks has not been validated. To go further, there exist two open questions for mathematical reasoning: how to select influential data and what is an influential data composition. For the former one, we propose a Quality-aware Diverse Selection (QaDS) strategy adaptable for mathematical reasoning. A comparison with other selection strategies validates the superiority of QaDS. For the latter one, we first enlarge our setting and explore the influential data composition. We conduct a series of experiments and highlight: scaling up reasoning data, and training with general data selected by QaDS is helpful. Then, we define our optimal mixture as OpenMathMix, an influential data mixture with open-source data selected by QaDS. With OpenMathMix, we achieve a state-of-the-art 48.8% accuracy on MATH with 7B base model. Additionally, we showcase the use of QaDS in creating efficient fine-tuning mixtures with various selection ratios, and analyze the quality of a wide range of open-source datasets, which can perform as a reference for future works on mathematical reasoning tasks.
Submission history
From: Xinzhe Ni [view email][v1] Mon, 1 Apr 2024 12:01:06 UTC (3,401 KB)
[v2] Sat, 7 Sep 2024 06:03:06 UTC (3,319 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.