Computer Science > Information Retrieval
[Submitted on 2 Apr 2024]
Title:CIRP: Cross-Item Relational Pre-training for Multimodal Product Bundling
View PDF HTML (experimental)Abstract:Product bundling has been a prevailing marketing strategy that is beneficial in the online shopping scenario. Effective product bundling methods depend on high-quality item representations, which need to capture both the individual items' semantics and cross-item relations. However, previous item representation learning methods, either feature fusion or graph learning, suffer from inadequate cross-modal alignment and struggle to capture the cross-item relations for cold-start items. Multimodal pre-train models could be the potential solutions given their promising performance on various multimodal downstream tasks. However, the cross-item relations have been under-explored in the current multimodal pre-train models. To bridge this gap, we propose a novel and simple framework Cross-Item Relational Pre-training (CIRP) for item representation learning in product bundling. Specifically, we employ a multimodal encoder to generate image and text representations. Then we leverage both the cross-item contrastive loss (CIC) and individual item's image-text contrastive loss (ITC) as the pre-train objectives. Our method seeks to integrate cross-item relation modeling capability into the multimodal encoder, while preserving the in-depth aligned multimodal semantics. Therefore, even for cold-start items that have no relations, their representations are still relation-aware. Furthermore, to eliminate the potential noise and reduce the computational cost, we harness a relation pruning module to remove the noisy and redundant relations. We apply the item representations extracted by CIRP to the product bundling model ItemKNN, and experiments on three e-commerce datasets demonstrate that CIRP outperforms various leading representation learning methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.