Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Mar 2024]
Title:On the Estimation of Image-matching Uncertainty in Visual Place Recognition
View PDF HTML (experimental)Abstract:In Visual Place Recognition (VPR) the pose of a query image is estimated by comparing the image to a map of reference images with known reference poses. As is typical for image retrieval problems, a feature extractor maps the query and reference images to a feature space, where a nearest neighbor search is then performed. However, till recently little attention has been given to quantifying the confidence that a retrieved reference image is a correct match. Highly certain but incorrect retrieval can lead to catastrophic failure of VPR-based localization pipelines. This work compares for the first time the main approaches for estimating the image-matching uncertainty, including the traditional retrieval-based uncertainty estimation, more recent data-driven aleatoric uncertainty estimation, and the compute-intensive geometric verification. We further formulate a simple baseline method, ``SUE'', which unlike the other methods considers the freely-available poses of the reference images in the map. Our experiments reveal that a simple L2-distance between the query and reference descriptors is already a better estimate of image-matching uncertainty than current data-driven approaches. SUE outperforms the other efficient uncertainty estimation methods, and its uncertainty estimates complement the computationally expensive geometric verification approach. Future works for uncertainty estimation in VPR should consider the baselines discussed in this work.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.