Mathematics > Optimization and Control
[Submitted on 31 Mar 2024]
Title:Dynamic Transfer Policies for Parallel Queues
View PDF HTML (experimental)Abstract:We consider the problem of load balancing in parallel queues by transferring customers between them at discrete points in time. Holding costs accrue as customers wait in the queue, while transfer decisions incur both fixed (setup) and variable costs proportional to the number and direction of transfers. Our work is primarily motivated by inter-facility patient transfers between hospitals during a surge in demand for hospitalization (e.g., during a pandemic). By analyzing an associated fluid control problem, we show that under fairly general assumptions including time-varying arrivals and convex increasing holding costs, the optimal policy in each period partitions the state-space into a well-defined $\textit{no-transfer region}$ and its complement, such that transferring is optimal if and only if the system is sufficiently imbalanced. In the absence of fixed transfer costs, an optimal policy moves the state to the no-transfer region's boundary; in contrast, with fixed costs, the state is moved to the no-transfer region's relative interior. We further leverage the fluid control problem to provide insights on the trade-off between holding and transfer costs, emphasizing the importance of preventing excessive idleness when transfers are not feasible in continuous-time. Using simulation experiments, we investigate the performance and robustness of the fluid policy for the stochastic system. In particular, our case study calibrated using data during the pandemic in the Greater Toronto Area demonstrates that transferring patients between hospitals could result in up to 27.7% reduction in total cost with relatively few transfers.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.