Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Feb 2024]
Title:Temporal-Spatial Processing of Event Camera Data via Delay-Loop Reservoir Neural Network
View PDF HTML (experimental)Abstract:This paper describes a temporal-spatial model for video processing with special applications to processing event camera videos. We propose to study a conjecture motivated by our previous study of video processing with delay loop reservoir (DLR) neural network, which we call Temporal-Spatial Conjecture (TSC). The TSC postulates that there is significant information content carried in the temporal representation of a video signal and that machine learning algorithms would benefit from separate optimization of the spatial and temporal components for intelligent processing. To verify or refute the TSC, we propose a Visual Markov Model (VMM) which decompose the video into spatial and temporal components and estimate the mutual information (MI) of these components. Since computation of video mutual information is complex and time consuming, we use a Mutual Information Neural Network to estimate the bounds of the mutual information. Our result shows that the temporal component carries significant MI compared to that of the spatial component. This finding has often been overlooked in neural network literature. In this paper, we will exploit this new finding to guide our design of a delay-loop reservoir neural network for event camera classification, which results in a 18% improvement on classification accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.