Computer Science > Artificial Intelligence
[Submitted on 24 Mar 2024]
Title:Evaluating Fairness Metrics Across Borders from Human Perceptions
View PDF HTML (experimental)Abstract:Which fairness metrics are appropriately applicable in your contexts? There may be instances of discordance regarding the perception of fairness, even when the outcomes comply with established fairness metrics. Several surveys have been conducted to evaluate fairness metrics with human perceptions of fairness. However, these surveys were limited in scope, including only a few hundred participants within a single country. In this study, we conduct an international survey to evaluate the appropriateness of various fairness metrics in decision-making scenarios. We collected responses from 1,000 participants in each of China, France, Japan, and the United States, amassing a total of 4,000 responses, to analyze the preferences of fairness metrics. Our survey consists of three distinct scenarios paired with four fairness metrics, and each participant answers their preference for the fairness metric in each case. This investigation explores the relationship between personal attributes and the choice of fairness metrics, uncovering a significant influence of national context on these preferences.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.