Computer Science > Computation and Language
[Submitted on 20 Mar 2024]
Title:What explains the success of cross-modal fine-tuning with ORCA?
View PDF HTML (experimental)Abstract:ORCA (Shen et al., 2023) is a recent technique for cross-modal fine-tuning, i.e., applying pre-trained transformer models to modalities beyond their training data. The technique consists primarily of training an embedder and fine-tuning the embedder and model. Despite its high performance on a variety of downstream tasks, we do not understand precisely how each of these components contribute to ORCA's success. Therefore, we run a series of ablations and find that embedder training does not help 2D tasks at all, contrary to what the original paper posits. In 1D tasks, some amount of embedder training is necessary but more is not better. In 4 out of 6 datasets we experiment with, it is model fine-tuning that makes the biggest difference. Through our ablations and baselines, we contribute a better understanding of the individual components of ORCA.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.