Computer Science > Machine Learning
[Submitted on 14 Mar 2024]
Title:Cooling-Guide Diffusion Model for Battery Cell Arrangement
View PDF HTML (experimental)Abstract:Our study introduces a Generative AI method that employs a cooling-guided diffusion model to optimize the layout of battery cells, a crucial step for enhancing the cooling performance and efficiency of battery thermal management systems. Traditional design processes, which rely heavily on iterative optimization and extensive guesswork, are notoriously slow and inefficient, often leading to suboptimal solutions. In contrast, our innovative method uses a parametric denoising diffusion probabilistic model (DDPM) with classifier and cooling guidance to generate optimized cell layouts with enhanced cooling paths, significantly lowering the maximum temperature of the cells. By incorporating position-based classifier guidance, we ensure the feasibility of generated layouts. Meanwhile, cooling guidance directly optimizes cooling-efficiency, making our approach uniquely effective. When compared to two advanced models, the Tabular Denoising Diffusion Probabilistic Model (TabDDPM) and the Conditional Tabular GAN (CTGAN), our cooling-guided diffusion model notably outperforms both. It is five times more effective than TabDDPM and sixty-six times better than CTGAN across key metrics such as feasibility, diversity, and cooling efficiency. This research marks a significant leap forward in the field, aiming to optimize battery cell layouts for superior cooling efficiency, thus setting the stage for the development of more effective and dependable battery thermal management systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.