Quantum Physics
[Submitted on 14 Mar 2024 (v1), last revised 14 Aug 2024 (this version, v3)]
Title:Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy
View PDF HTML (experimental)Abstract:While quantum computing has strong potential in data-driven fields, the privacy issue of sensitive or valuable information involved in the quantum algorithm should be considered. Differential privacy (DP), which is a fundamental privacy tool widely used in the classical scenario, has been extended to the quantum domain, i.e., quantum differential privacy (QDP). QDP may become one of the most promising approaches toward privacy-preserving quantum computing since it is not only compatible with classical DP mechanisms but also achieves privacy protection by exploiting unavoidable quantum noise in noisy intermediate-scale quantum (NISQ) devices. This paper provides an overview of the various implementations of QDP and their performance in terms of privacy parameters under the DP setting. Specifically, we propose a taxonomy of QDP techniques, categorizing the literature on whether internal or external randomization is used as a source to achieve QDP and how these implementations are applied to each phase of the quantum algorithm. We also discuss challenges and future directions for QDP. By summarizing recent advancements, we hope to provide a comprehensive, up-to-date review for researchers venturing into this field.
Submission history
From: Yusheng Zhao [view email][v1] Thu, 14 Mar 2024 08:40:30 UTC (1,886 KB)
[v2] Mon, 22 Apr 2024 14:29:55 UTC (1,454 KB)
[v3] Wed, 14 Aug 2024 09:05:55 UTC (1,454 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.