Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Mar 2024]
Title:Physics-Guided Abnormal Trajectory Gap Detection
View PDF HTML (experimental)Abstract:Given trajectories with gaps (i.e., missing data), we investigate algorithms to identify abnormal gaps in trajectories which occur when a given moving object did not report its location, but other moving objects in the same geographic region periodically did. The problem is important due to its societal applications, such as improving maritime safety and regulatory enforcement for global security concerns such as illegal fishing, illegal oil transfers, and trans-shipments. The problem is challenging due to the difficulty of bounding the possible locations of the moving object during a trajectory gap, and the very high computational cost of detecting gaps in such a large volume of location data. The current literature on anomalous trajectory detection assumes linear interpolation within gaps, which may not be able to detect abnormal gaps since objects within a given region may have traveled away from their shortest path. In preliminary work, we introduced an abnormal gap measure that uses a classical space-time prism model to bound an object's possible movement during the trajectory gap and provided a scalable memoized gap detection algorithm (Memo-AGD). In this paper, we propose a Space Time-Aware Gap Detection (STAGD) approach to leverage space-time indexing and merging of trajectory gaps. We also incorporate a Dynamic Region Merge-based (DRM) approach to efficiently compute gap abnormality scores. We provide theoretical proofs that both algorithms are correct and complete and also provide analysis of asymptotic time complexity. Experimental results on synthetic and real-world maritime trajectory data show that the proposed approach substantially improves computation time over the baseline technique.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.